Giáo viên kiêm ảo thuật gia người Pháp Ty Yann giới thiệu bài toán với các số tự nhiên từ 1 đến 9 như sau:
1 1 1 = 6
2 + 2 + 2 = 6
3 3 3 = 6
4 4 4 = 6
5 5 5 = 6
6 6 6 = 6
7 7 7 = 6
8 8 8 = 6
9 9 9 = 6
Người giải được sử dụng tất cả các phép tính trong toán học nhưng không được thêm bất cứ số nào.
Đáp án:
Với 3 số 3, cách làm rất đơn giản: 3 x 3 - 3 = 6.
Sử dụng phép 6 + 6 - 6 = 6 đối với 3 số 6.
Đối với 3 số 4, ta có thể sử dụng phép căn bậc hai từng số rồi tính tổng của chúng.
Với 3 số 9, ta sử dụng phép căn bậc hai của 9 thành 3 rồi tính như trong trường hợp 3 số 3.
Cách làm đối với 3 số 5 và 3 số 7 tương tự nhau:
5 + 5 : 5 = 6
7 - 7 : 7 = 6
3 số 8 là trường hợp dễ gây nhầm lẫn nhất vì nhiều người sẽ sử dụng phép căn bậc ba của 8 bằng 2 rồi tính tổng của chúng. Tuy nhiên, người ra đề quy định, người giải không được thêm bất kỳ số tự nhiên nào trong khi ký hiệu căn bậc ba có số 3.
Trong trường hợp này, Ty Yann dùng hai lần căn bậc hai của 8 + 8 (tương đương căn bậc 4 của 16) bằng 2. Sau đó, ông dùng phép tính 8 - 2 = 6.
Với 3 số 1, tác giả dùng phép giai thừa:
(1 + 1 + 1)! = 3! = 3 x 2 x 1 = 6.